Tuesday, 30 December 2014

Web Data Scraping Services At Lowest Rate For Business Directory

We are the world's most trusted provider directory, your business data scrape, and scrape email scraping and sending the data needed. We scour the entire directory database or doctors, lawyers, brokers, financial advisers, etc. As the scraping of a particular industry category wise database scraping or data that can be adapted.

We are pioneers in the worldwide web scraping and data services. We must understand the value of our customer database, we email id with the greatest effort to collect data. We are lawyers, doctors, brokers, realtors, schools, students, universities, IT managers, pubs, bars, nightclubs, dance clubs, financial advisers, liquor stores, Face book, Twitter, pharmaceutical companies, mortgage broker scraped data, accounting firms, car dealers , artists, shop health and job portals.

Our business database development services to try and get real quality at the lowest possible industry. Example worked. We have a quick turnaround time can be a business mailing database. Our business database development services to try and get real quality at the lowest possible industry. Example worked. We have a quick turnaround time can be a business mailing database.

We are the world's most trusted provider directory, your business data scrape, and scrape email scraping and sending the data needed. We scour the entire directory database or doctors, lawyers, brokers, financial advisers, etc., as the scraping of a particular industry category wise database scraping or data that can be adapted.

We are pioneers in the worldwide web scraping and data services. We must understand the value of our customer database, we email id with the greatest effort to collect data. We are lawyers, doctors, brokers, realtors, schools, students, universities, IT managers, pubs, bars, nightclubs, dance clubs, financial advisers, liquor stores, Face book, Twitter, pharmaceutical companies, mortgage broker scraped data, accounting firms, car dealers , artists, shop health and job portals.

What a great resource for specific information or content with little success to gather and have tried to organize themselves in a folder? You no longer need to worry, and data processing services through our website search are the best solution for your problem.

We currently have an "information explosion" phase of the walk, where there is so much information and content information for an event or a small group of channels.

Order without the benefit of you and your customers a little truth to that information. You use information and material is easy to organize in a way that is needed. Something other than a small business guide, simply create a separate folder in less than an hour.

Our technology-specific Web database for you to a similar configuration and database development to use. In addition, we finished our services can help you through the data to identify the sources of information for web pages to follow. This is a cost effective way to create a database.

We offer directory database, company name, address, the state, country, phone, email and website URL to take. In recent projects we have completed. We have a quick turnaround time can be a business mailing database. Our business database development services to try and get real quality at the lowest possible industry.

Source:http://www.articlesbase.com/outsourcing-articles/web-data-scraping-services-at-lowest-rate-for-business-directory-5757029.html

Sunday, 28 December 2014

What Kind of Legal Problems Can Web Scraping Cause

Web scraping software is readily available and has been used by many for legitimate purposes. It has also been used for illegal purposes. A website that engages in this practice should know the legal dangers of the activity.

Related Articles

Black Hat SEO Popular Techniques

General Knowledge- VII

The idea of web scraping is not new. Search engines have used this type of software to determine which results appear when someone conducts a search. They use special software software to extract data from a website and this data is then used to calculate the rankings of the website. Websites work very hard to improve their ranking and their chance of being found by anyone making a search. This use of this practice is understood and is considered to be a legitimate use for the software. However, there are services that provide web scraping and screen scraping prevention services and help the webmaster to remain safe from the attack of bad bots.

The problem with duplicacy is that it is often used for less than legitimate reasons. Since the software responsible can collect all sorts of data from websites and store the information that is collected, it represents a danger to anyone who might be affected by it. The information that can be collected can be used for many practices that are not so legitimate and may even be illegal. Anyone who is involved in this practice of content duplicacy should be aware of the legal issues implicated with this practice. It may be wise for anyone who has a website to find ways to prevent a site from being scraped or to use professional services to block site scraping.

Legal problems

The first thing to worry about, if you have a website or are using web scraping software, is when you might run into legal problems. Some of the issues that web scraping can cause include:

•    Access. If the software is used to access sites it does not have the right to access and takes information that it is not entitled to, the owner of the web scarping software may find themselves in legal trouble.

•    Re-use. The software can collect and reuse information. If that information is copyrighted, that might be a legal problem. Any information that is reused without permission may create legal issues for anyone who uses it.

•    Robots. Some states have enacted laws that are designed to keep people from using scraping robots. These automatically search out information on websites and using them may be illegal in some states. It is up to the user of the web scraping software to comply with any laws in the state in which they are operating.

Who is Responsible

The laws and regulations surrounding this practice are not always clear. There are many grey areas that allow this practice to occur. The question is, who is responsible for determining whether the use of web scraping software is legal?

Websites collect the information, but they may not be the entity using the web scraping software. If they are using this type of software, it is not always enough to inform the website's visitors that this practice is occurring. Putting this information into the user agreement may or may not protect the website from legal problems.

It is also partly the responsibility of a site owner to prevent a site from being scraped. There is software that can be used that will do this for a website and will keep any information that is collected safe and secure. A website may or may not be held legally responsible for any web scraper that is able to collect information they have. It will depend on why the data was collected, how it was used, who collected it, and whether precautions were taken.

What to expect

The issue of content copying and the legal issues surrounding it will continue to evolve. As more courts take on this issue, the lines between legal and illegal web scraping will become clearer. Many of the cases that have been brought to court have occurred in civil court, although there are some that have been taken up in a criminal court. There will be times when such practice may actually be a felony.

Before you use spying software, you need to realize that the laws surrounding its use are not clear. If you operate a website, you need to know the legal issues that you may face if scraping software is used on your website. The best step is to use the software available to protect your website and stop web scraping and be honest on your site if web scraping is used.

Source: http://www.articlesbase.com/technology-articles/what-kind-of-legal-problems-can-web-scraping-cause-6780486.html

Thursday, 25 December 2014

Central Qld Coal: Mining for Needed Investments

The Central Qld Coal Project is situated in the Galilee Coal Basin, Central Queensland with the purpose of establishing a mine to service international export markets for thermal coal. An estimated cost to such a project would be around $ 7.5 billion - the amount proves that the mining industry is one serious business to begin with.

In addition to the mine, the Central Qld Coal Project also proposes to construct a railway, potentially in excess of 400km depending on the final option: Either to transport processed coal to an expanded facility at Abbot Point or new export terminal to be established at Dudgeon Point. However, this would require new major water and power supply infrastructure to service the mine and port - hence, the extremely high cost. Because mining areas usually involve desolate areas where there is no direct risk to developed regions where the populace thrives, setting up new major water and power supplies would simply demand costs as high as the estimated cost - but this is not the only major percent of the whole budget of the Central Qld Coal Project.

The location for the Central Qld Coal Project is situated 40km northwest of Alpha, approximately 450 km west of Rockhampton and contains an amount of more than three billion tons. The proposed open-cut mine of the Central Qld Coal Project is expected to be developed in stages. It shall have an initial export capacity of 30 million tons per annum with a mine life expectancy of 30 years.

In terms of employment regarding Central Qld Coal Project, there will be around a total of 2,500 people to be employed during the construction and 1,600 permanent positions shall be employed in the operation stage of the Central Qld Coal Project.

Australia is a major coal exporter - the largest exporter of coal and fourth largest producer of coal. Australia is also the second largest producer of gold, second only to China. As for Opal, Australia is responsible for 95% of its production, thereby making her the largest producer worldwide. Australia would not also lose in terms of commercially viable diamond deposits - being third next after Russia and Botswana. This pretty much explains the significance of the mining industry to Australia. It is like the backbone of its economy; an industry focused on claiming the blessings the earth has giver her lands. The Central Qld Coal Project was made to further the exports and improve the trade. However, the Central Qld Coal Project requires quite a large sum for its project. It is only through the financial support of investments, both local and international, can it achieve its goals and begin reaping the fruits of the land.

Source: http://ezinearticles.com/?Central-Qld-Coal:-Mining-for-Needed-Investments&id=6314576

Monday, 22 December 2014

Scraping table from html web with CloudStat

You need to use the data from internet, but don’t type, you can just extract or scrape them if you know the web URL.

Thanks to XML package from R. It provides amazing readHTMLtable() function.

For a study case,

I want to scrape data:

    US Airline Customer Score.
    World Top Chess Players (Men).

A. Scraping US Airline Customer Score table from

http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines

Code:

airline = ‘http://www.theacsi.org/index.php?option=com_content&view=article&id=147&catid=&Itemid=212&i=Airlines’

airline.table = readHTMLTable(airline, header=T, which=1,stringsAsFactors=F)

Result:

B. Scraping World Top Chess players (Men) table from http://ratings.fide.com/top.phtml?list=men

Code:

chess = ‘http://ratings.fide.com/top.phtml?list=men’

chess.table = readHTMLTable(chess, header=T, which=5,stringsAsFactors=F)

Result:

Done. You had successfully scraping data from any web page with CloudStat.

You can get the full version of this study case (code and result) at Scraping table from html web.

Then, you can analyze as usual! Great! No more retype the data. Enjoy!

Source:http://www.r-bloggers.com/scraping-table-from-html-web-with-cloudstat/

Thursday, 18 December 2014

Data Extraction - A Guideline to Use Scrapping Tools Effectively

So many people around the world do not have much knowledge about these scrapping tools. In their views, mining means extracting resources from the earth. In these internet technology days, the new mined resource is data. There are so many data mining software tools are available in the internet to extract specific data from the web. Every company in the world has been dealing with tons of data, managing and converting this data into a useful form is a real hectic work for them. If this right information is not available at the right time a company will lose valuable time to making strategic decisions on this accurate information.

This type of situation will break opportunities in the present competitive market. However, in these situations, the data extraction and data mining tools will help you to take the strategic decisions in right time to reach your goals in this competitive business. There are so many advantages with these tools that you can store customer information in a sequential manner, you can know the operations of your competitors, and also you can figure out your company performance. And it is a critical job to every company to have this information at fingertips when they need this information.

To survive in this competitive business world, this data extraction and data mining are critical in operations of the company. There is a powerful tool called Website scraper used in online digital mining. With this toll, you can filter the data in internet and retrieves the information for specific needs. This scrapping tool is used in various fields and types are numerous. Research, surveillance, and the harvesting of direct marketing leads is just a few ways the website scraper assists professionals in the workplace.

Screen scrapping tool is another tool which useful to extract the data from the web. This is much helpful when you work on the internet to mine data to your local hard disks. It provides a graphical interface allowing you to designate Universal Resource Locator, data elements to be extracted, and scripting logic to traverse pages and work with mined data. You can use this tool as periodical intervals. By using this tool, you can download the database in internet to you spread sheets. The important one in scrapping tools is Data mining software, it will extract the large amount of information from the web, and it will compare that date into a useful format. This tool is used in various sectors of business, especially, for those who are creating leads, budget establishing seeing the competitors charges and analysis the trends in online. With this tool, the information is gathered and immediately uses for your business needs.

Another best scrapping tool is e mailing scrapping tool, this tool crawls the public email addresses from various web sites. You can easily from a large mailing list with this tool. You can use these mailing lists to promote your product through online and proposals sending an offer for related business and many more to do. With this toll, you can find the targeted customers towards your product or potential business parents. This will allows you to expand your business in the online market.

There are so many well established and esteemed organizations are providing these features free of cost as the trial offer to customers. If you want permanent services, you need to pay nominal fees. You can download these services from their valuable web sites also.

Source: http://ezinearticles.com/?Data-Extraction---A-Guideline-to-Use-Scrapping-Tools-Effectively&id=3600918

Wednesday, 17 December 2014

Online Data Entry and Data Mining Services

Data entry job involves transcribing a particular type of data into some other form. It can be either online or offline. The input data may include printed documents like Application forms, survey forms, registration forms, handwritten documents etc.

Data entry process is an inevitable part of the job to any organization. One way or other each organization demands data entry. Data entry skills vary depends upon the nature of the job requirement, in some cases data to be entered from a hard copy formats and in some other cases data to be entered directly into a web portal. Online data entry job generally requires the data to be entered in to any online data base.

For a super market, data associate might be required to enter the goods which have sold in a particular day and the new goods received in a particular day to maintain the stock well in order. Also, by doing this the concerned authorities will get an idea about the sale particulars of each commodity as they requires. In another example, an office the account executive might be required to input the day to day expenses in to the online accounting database in order to keep the account well in order.

The aim of the data mining process is to collect the information from reliable online sources as per the requirement of the customer and convert it to a structured format for the further use. The major source of data mining is any of the internet search engine like Google, Yahoo, Bing, AOL, MSN etc. Many search engines such as Google and Bing provide customized results based on the user's activity history. Based on our keyword search, the search engine lists the details of the websites from where we can gather the details as per our requirement.

Collect the data from the online sources such as Company Name, Contact Person, Profile of the Company, Contact Phone Number of Email ID Etc. are doing for the marketing activities. Once the data is gathered from the online sources into a structured format, the marketing authorities will start their marketing promotions by calling or emailing the concerned persons, which may result to create a new customer. So basically data mining is playing a vital role in today's business expansions. By outsourcing the data entry and its related works, you can save the cost that would be incurred in setting up the necessary infrastructure and employee cost.

Source:http://ezinearticles.com/?Online-Data-Entry-and-Data-Mining-Services&id=7713395

Monday, 15 December 2014

Git workflow for Scrapy projects

Our customers often ask us what’s the best workflow for working with Scrapy projects. A popular approach we have seen and used in the past is to split the spiders folder (typically project/spiders) into two folders: project/spiders_prod and project/spiders_dev, and use the SPIDER_MODULES setting to control which spiders are loaded on each environment. This works reasonably well, until you have to make changes to common code used by many spiders (ie. code outside the spiders folder), for example common base spiders.

Nowadays, DVCS (in particular, git) have become more popular and people are quite used to branching, so we recommend using a simple git workflow (similar to GitHub flow) where you branch for every change you make. You keep all changes in a branch while they’re being tested and finally merge to master when they’re finished. This means that master branch is always stable and contains only “production-ready” spiders.

If you are using our Scrapy Cloud platform, you can have 2 projects (myproject-dev, myproject-prod) and use myproject-dev to test the changes in your branch.  scrapy deploy in Scrapy 0.17 now adds the branch name to the version name (when using version=GIT or version=HG), so you can see which branch you are going to run directly on the panel. This is particularly useful with large teams working on a single Scrapy project, to avoid stepping into each other when making changes to common code.

Here is a concrete example to illustrate how this workflow works:y

•    the developer decides to work on issue 123 (could be a new spider or fixes to an existing spider)
•    the developer creates a new branch to work on the issue
•    git checkout -b issue123
•    the developer finishes working on the code and deploys to the panel (this assumes scrapy.cfg is configured with a deploy target, and using version=GIT – see here for more information)
•    scrapy deploy dev
•    the developer goes into the panel and runs the spider, where he’ll see the branch name (issue123) that will be run
•    the developer checks the scraped data looks fine through the item browser in the panel
•    whenever issues are found, the developer makes more fixes (always working on the same branch) and deploys new versions
•    once all issues are fixed, the developer merges the branch and deploys to production project
•    git checkout master
•    git merge issue123
•    git pull # make sure to pull latest code before deploying
•    scrapy deploy prod

We recommend you keep your common spiders well-tested and use Spider Contracts extensively to test your final spiders. Otherwise experience tell us that base spiders end up being copied (instead of reused) out of fear of breaking old spiders that depend on them, thus turning their maintenance into a nightmare.

Source:http://blog.scrapinghub.com/2013/03/06/git-workflow-scrapy-projects/

Saturday, 13 December 2014

Handling exceptions in scrapers

When requesting and parsing data from a source with unknown properties and random behavior (in other words, scraping), I expect all kinds of bizarrities to occur. Managing exceptions is particularly helpful in such cases.

Here is some ways that an exception might be raised.
[][0] #The list has no zeroth element, so this raises an IndexError
{}['foo'] #The dictionary has no foo element, so this raises a KeyError

Catching the exception is sometimes cleaner than preventing it from happening in the first place. Here are some examples handling bizarre exceptions in scrapers.

Example 1: Inconsistant date formats

Let’s say we’re parsing dates.
import datetime
This doesn’t raise an error.
datetime.datetime.strptime('2012-04-19', '%Y-%m-%d')
But this does.
datetime.datetime.strptime('April 19, 2012', '%Y-%m-%d')

It raises a ValueError because the date formats don’t match. So what do we do if we’re scraping a data source with multiple date formats?

Ignoring unexpected date formats

A simple thing is to ignore the date formats that we didn’t expect.

import lxml.html
import datetime
def parse_date1(source):
    rawdate = lxml.html.fromstring(source).get_element_by_id('date').text
    try:
         cleandate = datetime.datetime.strptime(rawdate, '%Y-%m-%d')
    except ValueError:
         cleandate = None
    return cleandate

print parse_date1('<div id="date">2012-04-19</div>')

If we make a clean date column in a database and put this in there, we’ll have some rows with dates and some rows with nulls. If there are only a few nulls, we might just parse those by hand.

Trying multiple date formats

Maybe we have determined that this particular data source uses three different date formats. We can try all three.

import lxml.html
import datetime

def parse_date2(source):

    rawdate = lxml.html.fromstring(source).get_element_by_id('date').text

    for date_format in ['%Y-%m-%d', '%B %d, %Y', '%d %B, %Y']:

        try:
             cleandate = datetime.datetime.strptime(rawdate, date_format)
             return cleandate
        except ValueError:
             pass
    return None

print parse_date2('<div id="date">19 April, 2012</div>')

This loops through three different date formats and returns the first one that doesn’t raise the error.

Example 2: Unreliable HTTP connection

If you’re scraping an unreliable website or you are behind an unreliable internet connection, you may sometimes get HTTPErrors or URLErrors for valid URLs. Trying again later might help.

import urllib2
def load(url):
    retries = 3
    for i in range(retries):
        try:
            handle = urllib2.urlopen(url)
            return handle.read()
        except urllib2.URLError:
            if i + 1 == retries:
                raise
            else:
                time.sleep(42)
    # never get here

print load('http://thomaslevine.com')

This function tries to download the page thee times. On the first two fails, it waits 42 seconds and tries again. On the third failure, it raises the error. On a success, it returs the content of the page.

Example 3: Logging errors rather than raising them

For more complicated parses, you might find loads of errors popping up in weird places, so you might want to go through all of the documents before deciding which to fix first or whether to do some of them manually.

import scraperwiki
for document_name in document_names:
    try:
        parse_document(document_name)
    except Exception as e:
        scraperwiki.sqlite.save([], {
            'documentName': document_name,
            'exceptionType': str(type(e)),
            'exceptionMessage': str(e)
        }, 'errors')

This catches any exception raised by a particular document, stores it in the database and then continues with the next document. Looking at the database afterwards, you might notice some trends in the errors that you can easily fix and some others where you might hard-code the correct parse.

Example 4: Exiting gracefully

When I’m scraping over 9000 pages and my script fails on page 8765, I like to be able to resume where I left off. I can often figure out where I left off based on the previous row that I saved to a database or file, but sometimes I can’t, particularly when I don’t have a unique index.


for bar in bars:
    try:
        foo(bar)
    except:
        print('Failure at bar = "%s"' % bar)
        raise

This will tell me which bar I left off on. It’s fancier if I save the information to the database, so here is how I might do that with ScraperWiki.

import scraperwiki
resume_index = scraperwiki.sqlite.get_var('resume_index', 0)
for i, bar in enumerate(bars[resume_index:]):
    try:
        foo(bar)
    except:
        scraperwiki.sqlite.save_var('resume_index', i)
        raise
scraperwiki.sqlite.save_var('resume_index', 0)

ScraperWiki has a limit on CPU time, so an error that often concerns me is the scraperwiki.CPUTimeExceededError. This error is raised after the script has used 80 seconds of CPU time; if you catch the exception, you have two CPU seconds to clean up. You might want to handle this error differently from other errors.

import scraperwiki
resume_index = scraperwiki.sqlite.get_var('resume_index', 0)
for i, bar in enumerate(bars[resume_index:]):
    try:
        foo(bar)
    except scraperwiki.CPUTimeExceededError:
        scraperwiki.sqlite.save_var('resume_index', i)
    except Exception as e:
        scraperwiki.sqlite.save_var('resume_index', i)
        scraperwiki.sqlite.save([], {
            'bar': bar,
            'exceptionType': str(type(e)),
            'exceptionMessage': str(e)
        }, 'errors')
scraperwiki.sqlite.save_var('resume_index', 0)

tl;dr

Expect exceptions to occur when you are scraping a randomly unreliable website with randomly inconsistent content, and consider handling them in ways that allow the script to keep running when one document of interest is bizarrely formatted or not available.

Source: https://blog.scraperwiki.com/2012/05/handling-exceptions-in-scrapers/

Thursday, 11 December 2014

Scraping Webmaster Tools with FMiner

The biggest problem (after the problem with their data quality) I am having with Google Webmaster Tools is that you can’t export all the data for external analysis. Luckily the guys from the FMiner.com web scraping tool contacted me a few weeks ago to test their tool. The problem with Webmaster Tools is that you can’t use web based scrapers and all the other screen scraping software tools were not that good in the steps you need to take to get to the data within Webmaster Tools. The software is available for Windows and Mac OSX users.

FMiner is a classical screen scraping app, installed on your desktop. Since you need to emulate real browser behaviour, you need to install it on your desktop. There is no coding required and their interface is visual based which makes it possible to start scraping within minutes. Another possibility I like is to upload a set of keywords, to scrape internal search engine result pages for example, something that is missing in a lot of other tools. If you need to scrape a lot of accounts, this tool provides multi-browser crawling which decreases the time needed.

This tool can be used for a lot of scraping jobs, including Google SERPs, Facebook Graph search, downloading files & images and collecting e-mail addresses. And for the real heavy scrapers, they also have built in a captcha solving API system so if you want to pass captchas while scraping, no problem.

Below you can find an introduction to the tool, with one of their tutorial video’s about scraping IMDB.com:

More basic and advanced tutorials can be found on their website: Fminer tutorials. Their tutorials show you a range of simple and complex tasks and how to use their software to get the data you need.

Guide for Scraping Webmaster Tools data

The software is capable of dealing with JavaScript and AJAX, one of the main requirements to scrape data from within Google Webmaster Tools.

Step 1: The first challenge is to login into webmaster tools. After opening a new project, first browse to https://www.google.com/webmasters/ and select the Recording button in the upper left corner.

fminer01

After browsing to this page, a goto action appears in the left panel. Click on this button and look for the “Action Options” button at the bottom of that panel. Tick the option Clear cookies before do it to avoid problems if you are already logged in for example.

fminer06

Step 2: Click the “Sign in Webmaster Tools” button. You will notice the Macro designer overview on the left registered a click as the first step.

fminer03

Step 3: Fill in your Google username and password. In the designer panel you will see the two Fill actions emerging.

fminer04

Step 4: After this step you should add some waiting time to be sure everything is fully loaded. Use the second button on the right side above the Macro Designer panel to add an action. 2000 milliseconds (2 seconds :)) will do the job.

fminer07

fminer08

Step 5: Browse to the account of which you want to export the data from

fminer05

Step 6: Browse to the specific pages of which you want the data scraped

fminer09

Step 7:Scrape the data from the tables as shown in the video

Congratulations, now you are able to scrape data from Google Webmaster Tools :)

Step 8: One of the things I use it for is pulling the search query data per keyword, which you normally can’t export. To do that, you have to use a right mouse click on the keyword, which opens a menu with options. Go to open links recursively and select normal. This will loop through all the keywords.

fminer10

Step 9: This video will show you how to make use of the pagination elements to loop through all the pages:

You can also download the following file, which has a predefined set of actions to login in WMT and download the keywords, impressions and clicks: google_webmaster_tools_login.fmpx. Open the file and update the login details by clicking on those action buttons and insert your own Google account details.

Automating and scheduling scrapers
For people that want to automate and regularly download the data, you can setup a Scheduler config and within the project settings you can setup the program to send an e-mail after completion of the crawl:

Source: http://www.notprovided.eu/scraping-webmaster-tools-fminer/

Thursday, 4 December 2014

Web scraping tutorial

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Now that we have got all the legalities out of the way, lets start with the examples.

1. Installing simplehtmldom.

Simplehtmldom is a PHP library that facilitates the process of creating web scrapers. It is a HTML DOM parser written in PHP5 that let you manipulate HTML in a quick and easy way. It is a wonderful library that does away with the messy details of regular expressions and uses CSS selector style DOM access like those found in jQuery.

First download the library from sourceforge.  Unzip the library in you PHP includes directory or a directory where you will be testing the code.

Writing our first scraper.
Now that we are ready with the tools, lets write our first web scraper. For our initial idea let us see how to grab the sponsored links section from a google search page.

There are three ways to access a website data. One is through a browser, the other is using a API (if the site provides one) and the last by parsing the web pages through code. The last one also known as Web Scraping is a technique of extracting information from websites using specially coded programs.

In this post we will take a quick look at writing a simple scraperusing the simplehtmldom library. But before we continue a word of caution:

Writing screen scrapers and spiders that consume large amounts of bandwidth, guess passwords, grab information from a site and use it somewhere else may well be a violation of someone’s rights and will eventually land you in trouble. Before writing  a screen scraper first see if the website offers an RSS feed or an API for the data you are looking. If not and you have to use a scraper, first check the websites policies regarding automated tools before proceeding.

Source: http://www.codediesel.com/php/web-scraping-in-php-tutorial/

Monday, 1 December 2014

Why scraping and why TheWebMiner?

If you read this blog you are one of two things: you are either interested in web scraping and you have studied this domain for quite a while, or you are just curious about this relatively new field of interest and want to know what it is, how it’s done and especially why. Either way it’s fine!

In case you haven’t googled already this I can tell you that data extraction (or scraping) is a technique in which a computer program extracts data from human-readable output coming from another program (wikipedia). Basically it can collect all the information on a certain subject from certain places. It’s sort of the equivalent of ctrl+f, at the scale of the whole internet. It’s nothing like the search engines that we currently use because it can extract the data in a certain file, as excel, csv (coma separated values) or any other that the buyer wants, and also extracts only the relevant data, only the values that you are interested in.

I hope now that you understand the concept and you are wondering just why would you need such data. Well let’s take the example of an online store, pretty common nowadays, and of course the manager just like any manager wants his business to thrive, so, for that he has to keep up with the other online stores. Now the web scraping takes place: it is very useful for him to have, saved as excels all the competitor’s prices of certain products if not all of them. By this he can maintain a fair pricing policy and always be ahead of his competitors by knowing all of their prices and fluctuations.  Of course the data collecting can also be done manually but this is not effective because we are talking of thousand of products each one having its own page and so on. This is only one example of situation in which scrapping is useful but there are hundreds and each one of them it’s profitable for the company.

By now I’ve talked about what it is and why you should be interested in it, from now on I’m going to explain why you should use thewebminer.com. First of all, it’s easy: you only have to specify what type of data you want and from where and we’ll manage the rest. Throughout the project you will receive first of all an approximation of price, followed by a time approximation. All the time you will be in contact with us so you can find out at any point what is the state of your project. The pricing policy is reasonable and depends on factors like the project size or complexity. For very big projects a discount may be applicable so the total cost be within reason.

Now I believe that thewebminer.com is able to manage with any kind of situation or requirement from users all over the world and to convince you, free samples are available at any project you may have or any uncertainty or doubt.

Source:http://thewebminer.com/blog/2013/07/

Friday, 28 November 2014

Webscraping using readLines and RCurl

There is a massive amount of data available on the web. Some of it is in the form of precompiled, downloadable datasets which are easy to access. But the majority of online data exists as web content such as blogs, news stories and cooking recipes. With precompiled files, accessing the data is fairly straightforward; just download the file, unzip if necessary, and import into R. For “wild” data however, getting the data into an analyzeable format is more difficult. Accessing online data of this sort is sometimes reffered to as “webscraping”. Two R facilities, readLines() from the base package and getURL() from the RCurl package make this task possible.

readLines

For basic webscraping tasks the readLines() function will usually suffice. readLines() allows simple access to webpage source data on non-secure servers. In its simplest form, readLines() takes a single argument – the URL of the web page to be read:

web_page <- readLines("http://www.interestingwebsite.com")

As an example of a (somewhat) practical use of webscraping, imagine a scenario in which we wanted to know the 10 most frequent posters to the R-help listserve for January 2009. Because the listserve is on a secure site (e.g. it has https:// rather than http:// in the URL) we can't easily access the live version with readLines(). So for this example, I've posted a local copy of the list archives on the this site.

One note, by itself readLines() can only acquire the data. You'll need to use grep(), gsub() or equivalents to parse the data and keep what you need.

# Get the page's source
web_page <- readLines("http://www.programmingr.com/jan09rlist.html")
# Pull out the appropriate line
author_lines <- web_page[grep("<I>", web_page)]
# Delete unwanted characters in the lines we pulled out
authors <- gsub("<I>", "", author_lines, fixed = TRUE)
# Present only the ten most frequent posters
author_counts <- sort(table(authors), decreasing = TRUE)
author_counts[1:10]
[webscrape results]


We can see that Gabor Grothendieck was the most frequent poster to R-help in January 2009.

The RCurl package

To get more advanced http features such as POST capabilities and https access, you'll need to use the RCurl package. To do webscraping tasks with the RCurl package use the getURL() function. After the data has been acquired via getURL(), it needs to be restructured and parsed. The htmlTreeParse() function from the XML package is tailored for just this task. Using getURL() we can access a secure site so we can use the live site as an example this time.

# Install the RCurl package if necessary
install.packages("RCurl", dependencies = TRUE)
library("RCurl")
# Install the XML package if necessary
install.packages("XML", dependencies = TRUE)
library("XML")
# Get first quarter archives
jan09 <- getURL("https://stat.ethz.ch/pipermail/r-help/2009-January/date.html", ssl.verifypeer = FALSE)
jan09_parsed <- htmlTreeParse(jan09)
# Continue on similar to above
...

For basic webscraping tasks readLines() will be enough and avoids over complicating the task. For more difficult procedures or for tasks requiring other http features getURL() or other functions from the RCurl package may be required. For more information on cURL visit the project page here.

Source: http://www.r-bloggers.com/webscraping-using-readlines-and-rcurl-2/

Wednesday, 26 November 2014

Screen scrapers: To program or to purchase?

Companies today use screen scraping tools for a variety of purposes, including collecting competitive information, capturing product specs, moving data between legacy and new systems, and keeping inventory or price lists accurate.

Because of their popularity and reputation as being extremely efficient tools for quickly gathering applicable display data, screen scraping tools or browser add-ons are a dime a dozen: some free, some low cost, and some part of a larger solution. Alternatively, you can build your own if you are (or know) a programming whiz. Each tool has its potential pros and cons, however, to keep in mind as you determine which type of tool would best fit your business need.

Program-your-own screen scraper

Pros:

    Using in-house resources doesn't require additional budget

Cons:

    Properly creating scripts to automate screen scraping can take a significant amount of time initially, and continues to take time in order to maintain the process. If, for instance, objects from which you're gathering data move on a web page, the entire process will either need to be re-automated, or someone with programming acumen will have to edit the script every time there is a change.

    It's questionable whether or not this method actually saves time and resources

Free or cheap scrapers

Pros:

    Here again, budget doesn't ever enter the picture, and you can drive the process yourself.

    Some tools take care of at least some of the programming heavy lifting required to screen scrape effectively

Cons:

    Many inexpensive screen scrapers require that you get up to speed on their programming language—a time-consuming process that negates the idea of efficiency that prompted the purchase.

Screen scraping as part of a full automation solution

Pros:

    In the amount of time it takes to perform one data extraction task, you have a completely composed script that the system writes for you

    It's the easiest to use out of all of the options

    Screen scraping is only part of the package; you can leverage automation software to automate nearly any task or process including tasks in Windows, Excel automation, IT processes like uploads, backups, and integrations, and business processes like invoice processing.

    You're likely to get buy-in for other automation projects (and visibility for the efficiency you're introducing to the organization) if you pick a solution with a clear and scalable business purpose, not simply a tool to accomplish a single task.

Cons:

    This option has the highest price tag because of its comprehensive capabilities.

Looking for more information?

Here are some options to dig deeper into screen scraping, and deciding on the right tool for you:

 Watch a couple demos of what screen scraping looks like with an automation solution driving the process.

 Read our web data extraction guide for a complete overview.

 Try screen scraping today by downloading a free trial.

Source: https://www.automationanywhere.com/screen-scrapers

Sunday, 23 November 2014

Data Mining Outsourcing in a Better and Unique Approach

Data mining outsourcing services are ideal for clarity in various decision making processes.  It is the ultimate goal of any organization and business to increase on its profits as well as strengthen the bond with its customers. Equipping the business in such a way that it’s very easy to detect frauds and manage risks in a convenient manner is equally important. Volumes of data that are irrelevant or cannot be used when raw needs to be converted to a more useful form.  The data mining outsourcing services can greatly help you to analyze and interpret data in a more diligent way.

This service to reliable, experienced and qualified hands is very important. Your research project or engineering project can be easily and conveniently handled by experienced staff who guarantees you an accuracy level of about 98% and a massive reduction in operating costs. The quality of work is unsurpassed and the presentation is done in a format that is easy and simple for you. The project is done in a very short time alleviating you delays as well as ensuring on-time completion of your projects. To enjoy a successful outsourcing experience, you need to bank on a famous and reliable expertise.

The only time to rely with data mining outsourcing services is when you do not have a reliable, experienced expertise in your business.  Statistics indicate that it’s very easy to lose business intelligence or expose the privacy of the customers through this process. However companies which offer secure outsourcing process are on the increase as a result of massive competition. It’s an opportunity to develop your potential of sourced data and improve your business in all fields. 

Data mining potential applications are infinite. However major applications are in the marketing research and scientific projects. It’s done both on large and small quantities of data by experienced staff well known for their best analytical procedures to guarantee you accurate and easy to use information. Data mining outsourcing services are the only perfect way to profitability.

Source:http://www.e-edge.biz/Data_Mining_Outsourcing_in_a_Better_and_Unique_Approach.html

Wednesday, 19 November 2014

NHL ending dry scraping of ice before overtime

TORONTO (AP) — The NHL will no longer dry scrape the ice before overtime.

Instituted this season in an effort to reduce the number of shootouts, the dry scraping will stop after Friday's games.

The general managers decided at their meeting Tuesday to make the change after the league talked to the players' union the past few days.

Beginning Saturday, ice crews around the league will again shovel the ice after regulation as they did in previous years. The GMs said the dry scrape was causing too much of a delay. Director of hockey operations Colin Campbell said the delays were lasting from more than four minutes to almost seven.

The dry scrape initially had been approved in hopes of reducing shootouts by improving scoring chances without unduly slowing play by recoating the ice.

The GMs also discussed expanded video review, including goaltender interference, and the possibility of three-on-three overtime. The American Hockey League is experimenting with the three-on-three format this season.

This annual meeting the day after the Hockey Hall of Fame induction usually doesn't produce actual changes, with the dry scrape providing an exception.

The main purpose is to set up the March meeting in Boca Raton, Florida, where these items will be further addressed.

Source:http://missoulian.com/sports/hockey/nhl-ending-dry-scraping-of-ice-before-overtime/article_3dd5473c-6102-5800-99f7-2c98be0f99ad.html

Monday, 17 November 2014

Scraping websites using the Scraper extension for Chrome

If you are using Google Chrome there is a browser extension for scraping web pages. It’s called “Scraper” and it is easy to use. It will help you scrape a website’s content and upload the results to google docs.

Walkthrough: Scraping a website with the Scraper extension
  •     Open Google Chrome and click on Chrome Web Store
  •     Search for “Scraper” in extensions
  •     The first search result is the “Scraper” extension
  •     Click the add to chrome button.
  •     Now let’s go back to the listing of UK MPs
  •     Open http://www.parliament.uk/mps-lords-and-offices/mps/
  •     Now mark the entry for one MP
  •     http://farm9.staticflickr.com/8490/8264509932_6cc8802992_o_d.png
  •     Right click and select “scrape similar…”
  •     http://farm9.staticflickr.com/8200/8264509972_f3a9e5d8e8_o_d.png
  •     A new window will appear – the scraper console
  •     http://farm9.staticflickr.com/8073/8263440961_9b94e63d56_b_d.jpg
  •     In the scraper console you will see the scraped content
  •     Click on “Save to Google Docs…” to save the scraped content as a Google Spreadsheet.
Walkthrough: extended scraping with the Scraper extension

Note: Before beginning this recipe – you may find it useful to understand a bit about HTML. Read our HTML primer.

Easy wasn’t it? Now let’s do something a little more complicated. Let’s say we’re interested in the roles a specific actress played. The source for all kinds of data on this is the IMDB (You can also search on sites like DBpedia or Freebase for this kinds of information; however, we’ll stick to IMDB to show the principle)

    Let’s say we’re interested in creating a timeline with all the movies the Italian actress Asia Argento ever starred; where do we start?

    The IMDB has a quite comprehensive archive of actors. Asia Argento’s site is: http://www.imdb.com/name/nm0000782/

    If you open the page you’ll see all the roles she ever played, together with a title and the year – let’s scrape this information

    Try to scrape it like we did above

    You’ll see the list comes out garbled – this is because the list here is structured quite differently.

    Go to the scraper console. Notice the small box on the upper left, saying XPath?

    XPath is a query language for HTML and XML.

    XPath can help you find the elements in the page you’re interested in – all you need to do is find the right element and then write the xpath for it.

    Now let’s assemble our table.

    You’ll see that our current Xpath – the one including the whole information is “//div[3]/div[3]/div[2]/div”

    http://farm9.staticflickr.com/8344/8264510130_ae31697fde_o_d.png

    Xpath is very simple it tells the computer to look at the HTML document and select <div> element number 3, then in this the third one, the second one and then all <div> elements (which if you count down our list, results in exactly where you are right now.
  •     However, we’d like to have the data separated out.
  •     To do this use the columns part of the scraper console…
  •     Let’s find our title first – look at the title using Inspect Element
  •     http://farm9.staticflickr.com/8355/8263441157_b4672d01b2_o_d.png
  •     See how the title is within a <b> tag? Let’s add the tag to our xpath.
  •     The expression seems to work well: let’s make this our first column
  •     In the “Columns” section, change the name of the first column to “title”
  •     Now let’s add the XPATH for the title to it
  •     The xpaths in the columns section are relative, that means “./b” will select the <b> element
  •     add “./b” to the xpath for the title column and click “scrape”
  •     http://farm9.staticflickr.com/8357/8263441315_42d6a8745d_o_d.png
  •     See how you only get titles?
  •     Now let’s continue for year? Years are within one <span>
  •     Create a new column by clicking on the small plus next to your “title” column
  •     Now create the “year” column with xpath “./span”
  •     http://farm9.staticflickr.com/8347/8263441355_89f4315a78_o_d.png
  •     Click on scrape and see how the year is added
  •     See how easily we got information out of a less structured webpage?
Source: http://schoolofdata.org/handbook/recipes/scraper-extension-for-chrome/

Sunday, 16 November 2014

Building Java Object Graph with Tour de France results – using screen scraping, java.util.Parser and assorted facilities

Last Saturday, the Tour de France 2011 departed. For people like myself, enjoying sports and working on Data Visualizations on the one hand and far fetched uses of SQL on the other, the Tour de France offers a wealth of data to work with: rankings for each stage in various categories, nationalities and teams to group by, distances and velocity, years to compare with one another and the like. So it has been my intention for some time to get hold of that data in a format I could work with.

Today I finally found some time to get it done. To locate the statistics for the Tour de France editions for the last few years and get them onto my laptop and into my database. This article describes the first part of that journey: how to get the stage results from some source on the internet into my locally running Java program in an appropriate object structure.

My starting point is the official Tour de France website:

Image

This website goes back to 2007 and also has the latest (2011) results. It presents the result in a format pleasing to the human eye – based on an HTML structure that is fairly pleasing to my groping Java code as well.

Analyzing the source of the Tour de France data

I start my explorations in Firefox, using the Firebug plugin. When I select the tab with the results for a particular stage, I inspect the (AJAX) call that is made to retrieve the stage results into the browser:

Image

The URL that was accessed is www.letour.fr/2010/TDF/LIVE/us/700/classement/ITE.html . When I access that URL directly, I see an HTML fragment with the individual ranking for the 7th stage in 2010. It turns out that with ITG instead of ITE in this URL, I get the overall ranking after the 7th Stage. Using IME in stead of ITE, I get the 7th stage’s climbers’ standing. And so on.

The HTML associated with the stage standing looks like this:

Image

Which is not as user friendly as the corresponding display in the browser:

Image

but still fairly well structured and programmatically interpretable.

Retrieving HTML fragments and parsing in Java

Consuming these HTML fragments with stage standings into my own Java code is very easy. Parsing the data and turning it into sensible Java Objects is slightly more work, but still quite feasible. From the Java Objects I next need to create a persistent storage for the data – that is the subject for another article.

Using the Java URL class and its openStream method to open an InputStream on whatever content can be found at the URL, it is dead easy to start reading the HTML from the Tour de France website into my Java program. I make use of the java.util.Scanner class to work my way through the HTML by Table Row (TR element). When you inspect the HTML fragments, it is clear early on that every individual rider’s entry corresponds with a TR element, so it seems only logical to have the Scanner break up the data by TR.

private static Stage processStage(int year, int stageSequence, Map<Integer, Rider> riders) throws java.io.IOException, java.net.MalformedURLException {

    String typeOfStanding = "ITE";
     URL stageStanding = new URL("http://www.letour.fr/"+year+"/TDF/LIVE/us/"
                                +(stageSequence==0?"0":stageSequence+"00") +
                                "/classement/"+typeOfStanding+".html");
    InputStream stream = stageStanding.openStream();
    Scanner scanner = new Scanner(stream);
    scanner.useDelimiter("</tr>");
    Stage stage = new Stage();
    stage.setSequence(stageSequence);
    boolean first = true;
    boolean firstStanding = true;
    while (scanner.hasNext()) {
        String entry = scanner.next();
        if (first) {
            first = false;
            Matcher regexMatcher = regexDistance.matcher(entry);
            if (regexMatcher.find()) {
                String distanceString = regexMatcher.group();
                stage.setTotalDistance(Float.parseFloat(distanceString.substring(0, distanceString.length() - 3)));
            }
        }
        if (!first) {
            String[] els = entry.split("/td>");
            if (els.length > 1) { // only the standing-entries have more than one td element
                Integer riderNumber = Integer.parseInt(extractValue(els[2]));

                Rider rider=null;
                if (riders.containsKey(riderNumber)) {
                    rider = riders.get(riderNumber);
                }
                else {
                    rider = new Rider(extractValue(els[1]),riderNumber, extractValue(els[3]));
                    riders.put(riderNumber,rider);
                }
                Standing standing =
                    new Standing(firstStanding ? 1 : (Integer.parseInt(extractValue(els[0]).replace(".", ""))),
                                  rider,extractValue(els[4]),
                                  extractValue(els[5]));
                firstStanding = false;
                stage.getStandings().add(standing);                }
        }
    } //while
    scanner.close();
    return stage;
}

Subsequently, the TR elements need to be broken up in the TD cell elements that contain the rank, rider’s name, their number, the team they ride for and the time for the stage as well as their lag with regard to the winner. I have used a simple split (on /td>) to extract the cells. The final logic for pulling the correct value from the cell is in the method extractValue. Note: this code is not very pretty, and I am not necessarily overly proud of it. On the other hand: it is one-time-use-only code and it is still fairly compact and easy to write and read.

private static String extractValue(String el) {
    String r = el.split("</")[0];
    if (r.lastIndexOf(">") > 0) {
        r = r.substring(r.lastIndexOf(">") + 1);
    }
    return r.split("<")[0];
}

I have created a few domain classes: Rider, Stage, Standing (as well as Tour) that are a business domain like representation of the Tour de France result data. Objects based on these classes are instantiated in the processStage method that is being invoked from the processTour method.

public static void processTour(Tour tour) throws IOException, MalformedURLException {
    if (tour.isPrologue())
      tour.getStages().add(processStage(tour.getYear(),0, tour.getRiders()));

    for (int i=1;i<= tour.getNumberOfStages();i++)  {
        tour.getStages().add(processStage(tour.getYear(),i, tour.getRiders()));
    }
}

When I run the TourManager class – a class that create a single Tour object for the Tour de France in 2010 –

public class TourManager {
     List<Tour> tours = new ArrayList<Tour>();
     public TourManager() {
        tours.add(new Tour(2010, 20, true));
        try {
            ProcessTourStandings.processTour(tours.get(0));
        } catch (MalformedURLException e) {
            System.out.println(e.getMessage());
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
     public static void main(String[] args) {
        TourManager tm = new TourManager();
        for (Tour tour : tm.getTours()) {
            for (Stage stage : tour.getStages()) {
                System.out.println("================ Stage " + stage.getSequence() + "(" + stage.getTotalDistance() +
                                   " km)");
                for (Standing standing : stage.getStandings()) {
                    if (standing.getRank() < 4) {
                        System.out.println(standing.getRank() + "." + standing.getRider().getName());
                    }
                }
            }
        }
    }

it will print the top 3 in every stage:

Image

Source:http://technology.amis.nl/2011/07/04/building-java-object-graph-with-tour-de-france-results-using-screen-scraping-java-util-parser-and-assorted-facilities/

Thursday, 13 November 2014

Scraping Data: Site-specific Extractors vs. Generic Extractors

Scraping is becoming a rather mundane job with every other organization getting its feet wet with it for their own data gathering needs. There have been enough number of crawlers built – some open-sourced and others internal to organizations for in-house utilities. Although crawling might seem like a simple technique at the onset, doing this at a large-scale is the real deal. You need to have a distributed stack set up to take care of handling huge volumes of data, to provide data in a low-latency model and also to deal with fail-overs. This still is achievable after crossing the initial tech barrier and via continuous optimizations. (P.S. Not under-estimating this part because it still needs a team of Engineers monitoring the stats and scratching their heads at times).

Social Media Scraping

Focused crawls on a predefined list of sites

However, you bump into a completely new land if your goal is to generate clean and usable data sets from these crawls i.e. “extract” data in a format that your DB can process and aid in generating insights. There are 2 ways of tackling this:

a. site-specific extractors which give desired results

b. generic extractors that result in few surprises

Assuming you still do focused crawls on a predefined list of sites, let’s go over specific scenarios when you have to pick between the two-

1. Mass-scale crawls; high-level meta data - Use generic extractors when you have a large-scale crawling requirement on a continuous basis. Large-scale would mean having to crawl sites in the range of hundreds of thousands. Since the web is a jungle and no two sites share the same template, it would be impossible to write an extractor for each. However, you have to settle in with just the document-level information from such crawls like the URL, meta keywords, blog or news titles, author, date and article content which is still enough information to be happy with if your requirement is analyzing sentiment of the data.

cb1c0_one-size

A generic extractor case

Generic extractors don’t yield accurate results and often mess up the datasets deeming it unusable. Reason being

programatically distinguishing relevant data from irrelevant datasets is a challenge. For example, how would the extractor know to skip pages that have a list of blogs and only extract the ones with the complete article. Or delineating article content from the title on a blog page is not easy either.

To summarize, below is what to expect of a generic extractor.

Pros-

minimal manual intervention

low on effort and time

can work on any scale

Cons-

Data quality compromised

inaccurate and incomplete datasets

lesser details suited only for high-level analyses

Suited for gathering- blogs, forums, news

Uses- Sentiment Analysis, Brand Monitoring, Competitor Analysis, Social Media Monitoring.

2. Low/Mid scale crawls; detailed datasets - If precise extraction is the mandate, there’s no going away from site-specific extractors. But realistically this is do-able only if your scope of work is limited i.e. few hundred sites or less. Using site-specific extractors, you could extract as many number of fields from any nook or corner of the web pages. Most of the times, most pages on a website share similar templates. If not, they can still be accommodated for using site-specific extractors.

cutlery

Designing extractor for each website

Pros-

High data quality

Better data coverage on the site

Cons-

High on effort and time

Site structures keep changing from time to time and maintaining these requires a lot of monitoring and manual intervention

Only for limited scale

Suited for gathering - any data from any domain on any site be it product specifications and price details, reviews, blogs, forums, directories, ticket inventories, etc.

Uses- Data Analytics for E-commerce, Business Intelligence, Market Research, Sentiment Analysis

Conclusion

Quite obviously you need both such extractors handy to take care of various use cases. The only way generic extractors can work for detailed datasets is if everyone employs standard data formats on the web (Read our post on standard data formats here). However, given the internet penetration to the masses and the variety of things folks like to do on the web, this is being overly futuristic.

So while site-specific extractors are going to be around for quite some time, the challenge now is to tweak the generic ones to work better. At PromptCloud, we have added ML components to make them smarter and they have been working well for us so far.

What have your challenges been? Do drop in your comments.

Source: https://www.promptcloud.com/blog/scraping-data-site-specific-extractors-vs-generic-extractors/

Wednesday, 12 November 2014

'Scrapers' Dig Deep for Data on Web

At 1 a.m. on May 7, the website PatientsLikeMe.com noticed suspicious activity on its "Mood" discussion board. There, people exchange highly personal stories about their emotional disorders, ranging from bipolar disease to a desire to cut themselves.

It was a break-in. A new member of the site, using sophisticated software, was "scraping," or copying, every single message off PatientsLikeMe's private online forums.

Enlarge Image

Bilal Ahmed wrote about his health on a site that was scraped. Andrew Quilty for The Wall Street Journal.

PatientsLikeMe managed to block and identify the intruder: Nielsen Co., the privately held New York media-research firm. Nielsen monitors online "buzz" for clients, including major drug makers, which buy data gleaned from the Web to get insight from consumers about their products, Nielsen says.

"I felt totally violated," says Bilal Ahmed, a 33-year-old resident of Sydney, Australia, who used PatientsLikeMe to connect with other people suffering from depression. He used a pseudonym on the message boards, but his PatientsLikeMe profile linked to his blog, which contains his real name.

After PatientsLikeMe told users about the break-in, Mr. Ahmed deleted all his posts, plus a list of drugs he uses. "It was very disturbing to know that your information is being sold," he says. Nielsen says it no longer scrapes sites requiring an individual account for access, unless it has permission.

Related Reading

    Digits: Escaping the 'Scrapers'
    Complete Coverage: What They Know

Journal Community

The market for personal data about Internet users is booming, and in the vanguard is the practice of "scraping." Firms offer to harvest online conversations and collect personal details from social-networking sites, résumé sites and online forums where people might discuss their lives.

The emerging business of web scraping provides some of the raw material for a rapidly expanding data economy. Marketers spent $7.8 billion on online and offline data in 2009, according to the New York management consulting firm Winterberry Group LLC. Spending on data from online sources is set to more than double, to $840 million in 2012 from $410 million in 2009.

The Wall Street Journal's examination of scraping—a trade that involves personal information as well as many other types of data—is part of the newspaper's investigation into the business of tracking people's activities online and selling details about their behavior and personal interests.

Some companies collect personal information for detailed background reports on individuals, such as email addresses, cell numbers, photographs and posts on social-network sites.

Others offer what are known as listening services, which monitor in real time hundreds or thousands of news sources, blogs and websites to see what people are saying about specific products or topics.

One such service is offered by Dow Jones & Co., publisher of the Journal. Dow Jones collects data from the Web—which may include personal information contained in news articles and blog postings—that help corporate clients monitor how they are portrayed. It says it doesn't gather information from password-protected parts of sites.

It's rarely a coincidence when you see Web ads for products that match your interests. WSJ's Christina Tsuei explains how advertisers use cookies to track your online habits.

The competition for data is fierce. PatientsLikeMe also sells data about its users. PatientsLikeMe says the data it sells is anonymized, no names attached.

Nielsen spokesman Matt Anchin says the company's reports to its clients include publicly available information gleaned from the Internet, "so if someone decides to share personally identifiable information, it could be included."

Internet users often have little recourse if personally identifiable data is scraped: There is no national law requiring data companies to let people remove or change information about themselves, though some firms let users remove their profiles under certain circumstances.

California has a special protection for public officials, including politicians, sheriffs and district attorneys. It makes it easier for them to remove their home address and phone numbers from these databases, by filling out a special form stating they fear for their safety.

Data brokers long have scoured public records, such as real-estate transactions and courthouse documents, for information on individuals. Now, some are adding online information to people's profiles.

Many scrapers and data brokers argue that if information is available online, it is fair game, no matter how personal.

"Social networks are becoming the new public records," says Jim Adler, chief privacy officer of Intelius Inc., a leading paid people-search website. It offers services that include criminal background checks and "Date Check," which promises details about a prospective date for $14.95.

"This data is out there," Mr. Adler says. "If we don't bring it to the consumer's attention, someone else will."

Scraping for Your Real Name

PeekYou.com has applied for a patent for a way to, among other things, match people's real names to pseudonyms they use on blogs, Twitter and online forums.

Read PeekYou.com's patent application.

Enlarge Image

New York-based PeekYou LLC has applied for a patent for a method that, among other things, matches people's real names to the pseudonyms they use on blogs, Twitter and other social networks. PeekYou's people-search website offers records of about 250 million people, primarily in the U.S. and Canada.

PeekYou says it also is starting to work with listening services to help them learn more about the people whose conversations they are monitoring. It says it hands over only demographic information, not names or addresses.

Employers, too, are trying to figure out how to use such data to screen job candidates. It's tricky: Employers legally can't discriminate based on gender, race and other factors they may glean from social-media profiles.

One company that screens job applicants for employers, InfoCheckUSA LLC in Florida, began offering limited social-networking data—some of it scraped—to employers about a year ago. "It's slowly starting to grow," says Chris Dugger, national account manager. He says he's particularly interested in things like whether people are "talking about how they just ripped off their last employer."

Scrapers operate in a legal gray area. Internationally, anti-scraping laws vary. In the U.S., court rulings have been contradictory. "Scraping is ubiquitous, but questionable," says Eric Goldman, a law professor at Santa Clara University. "Everyone does it, but it's not totally clear that anyone is allowed to do it without permission."

Scrapers and listening companies say what they're doing is no different from what any person does when gathering information online—they just do it on a much larger scale.

"We take an incomprehensible amount of information and make it intelligent," says Chase McMichael, chief executive of InfiniGraph, a Palo Alto, Calif., "listening service" that helps companies understand the likes and dislikes of online customers.

Scraping services range from dirt cheap to custom-built. Some outfits, such as 80Legs.com in Texas, will scrape a million Web pages for $101. One Utah company, screen-scraper.com, offers do-it-yourself scraping software for free. The top listening services can charge hundreds of thousands of dollars to monitor and analyze Web discussions.

Some scrapers-for-hire don't ask clients many questions.

"If we don't think they're going to use it for illegal purposes—they often don't tell us what they're going to use it for—generally, we'll err on the side of doing it," says Todd Wilson, owner of screen-scraper.com, a 10-person firm in Provo, Utah, that operates out of a two-room office. It is one of at least three firms in a scenic area known locally as "Happy Valley" that specialize in scraping.

Enlarge Image

Some of the computer code behind screen-scraper.com's software. Chris Detrick for The Wall Street Journal

Screen-scraper charges between $1,500 and $10,000 for most jobs. The company says it's often hired to conduct "business intelligence," working for companies who want to scrape competitors' websites.

One recent assignment: A major insurance company wanted to scrape the names of agents working for competitors. Why? "We don't know," says Scott Wilson, the owner's brother and vice president of sales. Another job: attempting to scrape Facebook for a multi-level marketing company that wanted email addresses of users who "like" the firm's page—as well as their friends—so they all could be pitched products.

Scraping often is a cat-and-mouse game between websites, which try to protect their data, and the scrapers, who try to outfox their defenses. Scraping itself isn't difficult: Nearly any talented computer programmer can do it. But penetrating a site's defenses can be tough.

One defense familiar to most Internet users involves "captchas," the squiggly letters that many websites require people to type to prove they're human and not a scraping robot. Scrapers sometimes fight back with software that deciphers captchas.

More From the Series

    Web's New Goldmine: Your Secrets

    Personal Details Exposed Via Biggest Websites

    Microsoft Quashed Bid to Boost Web Privacy

    On Web's Cutting Edge, Anonymity in Name Only

    Stalking by Cellphone

    Google Agonizes Over Privacy

    The Tracking Ecosystem

    On the Web, Children Face Intensive Tracking

Some professional scrapers stage blitzkrieg raids, mounting around a dozen simultaneous attacks on a website to grab as much data as quickly as possible without being detected or crashing the site they're targeting.

Raids like these are on the rise. "Customers for whom we were regularly blocking about 1,000 to 2,000 scrapes a month are now seeing three times or in some cases 10 times as much scraping," says Marino Zini, managing director of Sentor Anti Scraping System. The company's Stockholm team blocks scrapers on behalf of website clients.

At Monster.com, the jobs website that stores résumés for tens of millions of individuals, fighting scrapers is a full-time job, "every minute of every day of every week," says Patrick Manzo, global chief privacy officer of Monster Worldwide Inc. Facebook, with its trove of personal data on some 500 million users, says it takes legal and technical steps to deter scraping.

At PatientsLikeMe, there are forums where people discuss experiences with AIDS, supranuclear palsy, depression, organ transplants, post-traumatic stress disorder and self-mutilation. These are supposed to be viewable only by members who have agreed not to scrape, and not by intruders such as Nielsen.

"It was a bad legacy practice that we don't do anymore," says Dave Hudson, who in June took over as chief executive of the Nielsen unit that scraped PatientsLikeMe in May. "It's something that we decided is not acceptable, and we stopped."

Mr. Hudson wouldn't say how often the practice occurred, and wouldn't identify its client.

The Nielsen unit that did the scraping is now part of a joint venture with McKinsey & Co. called NM Incite. It traces its roots to a Cincinnati company called Intelliseek that was founded in 1997. One of its most successful early businesses was scraping message boards to find mentions of brand names for corporate clients.

In 2001, the venture-capital arm of the Central Intelligence Agency, In-Q-Tel Inc., was among a group of investors that put $8 million into the business.

Intelliseek struggled to set boundaries in the new business of monitoring individual conversations online, says Sundar Kadayam, Intelliseek's co-founder. The firm decided it wouldn't be ethical to use automated software to log into private message boards to scrape them.

But, he says, Intelliseek occasionally would ask employees to do that kind of scraping if clients requested it. "The human being can just sign in as who they are," he says. "They don't have to be deceitful."

In 2006, Nielsen bought Intelliseek, which had revenue of more than $10 million and had just become profitable, Mr. Kadayam says. He left one year after the acquisition.

At the time, Nielsen, which provides television ratings and other media services, was looking to diversify into digital businesses. Nielsen combined Intelliseek with a New York startup it had bought called BuzzMetrics.

The new unit, Nielsen BuzzMetrics, quickly became a leader in the field of social-media monitoring. It collects data from 130 million blogs, 8,000 message boards, Twitter and social networks. It sells services such as "ThreatTracker," which alerts a company if its brand is being discussed in a negative light. Clients include more than a dozen of the biggest pharmaceutical companies, according to the company's marketing material.

Like many websites, PatientsLikeMe has software that detects unusual activity. On May 7, that software sounded an alarm about the "Mood" forum.

David Williams, the chief marketing officer, quickly determined that the "member" who had triggered the alert actually was an automated program scraping the forum. He shut down the account.

The next morning, the holder of that account e-mailed customer support to ask why the login and password weren't working. By the afternoon, PatientsLikeMe had located three other suspect accounts and shut them down. The site's investigators traced all of the accounts to Nielsen BuzzMetrics.

On May 18, PatientsLikeMe sent a cease-and-desist letter to Nielsen. Ten days later, Nielsen sent a letter agreeing to stop scraping. Nielsen says it was unable to remove the scraped data from its database, but a company spokesman later said Nielsen had found a way to quarantine the PatientsLikeMe data to prevent it from being included in its reports for clients.

PatientsLikeMe's president, Ben Heywood, disclosed the break-in to the site's 70,000 members in a blog post. He also reminded users that PatientsLikeMe also sells its data in an anonymous form, without attaching user's names to it. That sparked a lively debate on the site about the propriety of selling sensitive information. The company says most of the 350 responses to the blog post were supportive. But it says a total of 218 members quit.

In total, PatientsLikeMe estimates that the scraper obtained about 5% of the messages in the site's forums, primarily in "Mood" and "Multiple Sclerosis."

Source: http://online.wsj.com/articles/SB10001424052748703358504575544381288117888

Monday, 10 November 2014

My Experience in Choosing a Web Scraping Service

Recently I decided to outsource a web scraping project to another company. I typed “web scraping service” in Google, chose six services from the first two search result pages and sent the project specifications to all of them to get quotes. Eventually I decided to go another way and did not order the services, but my experience may be useful for others who want to entrust web scraping jobs to third party services.

If you are interested in price comparisons only and not ready to read the whole story just scroll down.

A list of web scraping services I sent my project to:

    www.datahen.com - Canadian web scraping service with nice web design
    webdata-scraping.com - Indian service by Keval Kothari
    www.iwebscraping.com - India based web scraping company (same as www.3idatascraping.com)
    scrapinghub.com - A scraping service founded by creators of Scrapy
    web-scraper.com - Yet another web scraping service
    grepsr.com - A scraping service that we already reviewed two years ago

Sending the request


All the services except scrapinghub.com have quite simple forms for the description of the project requirements. Basically, you just need to give your contact details and a project description in any form. Some of them are pretty (like datahen.com), some of them are more ascetic (like web-scraper.com), but all of them allow you to send your requirements to developers.

Scrapinghub.com has a quite long form, but most of the fields are optional and all the questions are quite natural. If you really know what you need, then it won’t be hard to answer all of them; moreover they rather help you to describe your need in detail.

Note, that in the context of the project I didn’t make a request for a scraper itself. I asked to receive data on a weekly basis only.

Getting responses

Since I sent my request on Sunday it would have been ok not to receive responses the same day, but I got the first response in 3 hrs! It was from web-scraper.com and stated that this project will cost me $250 monthly. Simple and clear. Thank you, Thang!

Right after that, I received the second response. This time it was Keval from webdata-scraping.com. He had some questions regarding the project. Then after two days he wrote me that it would be hard to scrape some of my data with the software he uses, and that he will try to use a custom scraper. After that he disappeared… ((

Then on Monday I received Cost & ETAT details from datahen.com. It looked quite professional and contained not only price, but also time estimation. They were ready to create such a scraper in 3-4 days for $249 and then maintain it for just $65/month.

On the same day I received a quote from iwebscraping.com. It was $60 per week. Everything is fine, but I’d like to mention that it wasn’t the last letter from them. After I replied to them (right after receiving the quote), I received a reminder letter from them every other day for about a week. So be ready for aggressive marketing if you ask them for a quote )).

Finally in two days after requesting a quote I got a response from scrapinghub.com. Paul Tremberth wrote me that they were ready to build a scraper for $1200 and then maintain it for $300/month.

It is interesting that I have never received an answer from grepsr.com! Two years ago it was the first web scraping service we faced on the web, but now they simply ignored my request! Or perhaps they didn’t receive it somehow? Anyway I had no time for investigation.

So what?

Let us put everything together. Out of six web scraping  services I received four quotes with the following prices:

Service     Setup fee     Monthly fee

web-scraper.com     -     $250
datahen.com     $249     $65
iwebscraping.com     -     $240
scrapinghub.com     $1200     $300


From this table you can see that  scrapinghub.com appears to be the most expensive service among those compared.

EDIT: These $300/month gives you as much support and development needed to fix a 5M multi-site web crawler, for example. If you need a cheaper solution you can use their Autoscraping tool, which is free, and would have costed around $2/month to crawl at my requested rates.

The average cost of monthly scraping is about $250, but from a long term perspective datahen.com may save you money due to their low monthly fee.

That’s it! If I had enough money available it would be interesting to compare all these services in operation and provide you a more complete report, but this is all I have for now.

If you have anything to share about your experience in using similar services, please contribute to this post by commenting on it below. Cheers!

Source: http://scraping.pro/choosing-web-scraping-service/

Saturday, 8 November 2014

Why People Hesitate To Try Data Mining

What is hindering a number of people from venturing into the promising world of data mining? Despite so much encouragement, promotions, testimonials, and evidences of the benefits of online data collection, still only a handful take the challenge and really gain the pay offs it has to offer.

It may sound unthinkable that such an opportunity for success has been neglected by many. It may also sound absurd why many well-meaning individuals are hindered from enjoying the benefits of the blessings of the 21st century.

The Causes

After considerable observation and analysis of the human psyche, one can understand the underlying reasons behind the hesitance to try the profitable data mining service. The most common reasons why people are afraid to try new technology or why they remain passive and uninvolved are: fear; lack of knowledge; and pride.

Fear. The most paralyzing of human emotions is fear. It can, to some extent, cause a person to be insane, unprofitable, sick, and lost. Although fear is a normal reaction to certain stimuli and a natural feeling experienced by humans, it must always be monitored and controlled.  Usually, people share common fears, such as: fear of change; fear of anything new; and fear of the unknown.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/people-hesitate-try-data-mining/

Wednesday, 5 November 2014

Why Web Scraping is Indispensable

The 21st century has opened the gates to hidden treasures and unlimited access to information globally without the constraints of time and space, through Internet technology. Along with this development comes the necessity for each business or company to get as much information as possible in order in order to thrive in the ever increasing demand for new innovations, comparisons, and trends.

Web scraping has consequently become an indispensable option to achieve all the needed data as quickly and efficiently as possible. In this view, data mining then appears to be the best and the only way to answer the present demand for updates, data, coping, foreknowledge, analysis, and evaluation. Indeed, information has inevitably become a valuable commodity and the most sought after product among online and offline entrepreneurs.

Need for Data

The increasing need for new data makes it possible for the experts to become increasingly creative in accessing information worldwide. The more knowledge one has, the better are his or her chances of growing and surviving. There seems to be no other time in the human existence where data has become so much a major source of revenue as the contemporary times.

Source:http://www.loginworks.com/blogs/web-scraping-blogs/web-scraping-indispensable/

Monday, 8 September 2014

How can I circumvent page view limits when scraping web data using Python?

I am using Python to scrape US postal code population data from http:/www.city-data.com, through this directory: http://www.city-data.com/zipDir.html. The specific pages I am trying to scrape are individual postal code pages with URLs like this: http://www.city-data.com/zips/01001.html. All of the individual zip code pages I need to access have this same URL Format, so my script simply does the following for postal_code in range:

    Creates URL given postal code
    Tries to get response from URL
    If (2), Check the HTTP of that URL
    If HTTP is 200, retrieves the HTML and scrapes the data into a list
    If HTTP is not 200, pass and count error (not a valid postal code/URL)
    If no response from URL because of error, pass that postal code and count error
    At end of script, print counter variables and timestamp

The problem is that I run the script and it works fine for ~500 postal codes, then suddenly stops working and returns repeated timeout errors. My suspicion is that the site's server is limiting the page views coming from my IP address, preventing me from completing the amount of scraping that I need to do (all 100,000 potential postal codes).

My question is as follows: Is there a way to confuse the site's server, for example using a proxy of some kind, so that it will not limit my page views and I can scrape all of the data I need?

Thanks for the help! Here is the code:

##POSTAL CODE POPULATION SCRAPER##

import requests

import re

import datetime

def zip_population_scrape():

    """
    This script will scrape population data for postal codes in range
    from city-data.com.
    """
    postal_code_data = [['zip','population']] #list for storing scraped data

    #Counters for keeping track:
    total_scraped = 0
    total_invalid = 0
    errors = 0


    for postal_code in range(1001,5000):

        #This if statement is necessary because the postal code can't start
        #with 0 in order for the for statement to interate successfully
        if postal_code <10000:
            postal_code_string = str(0)+str(postal_code)
        else:
            postal_code_string = str(postal_code)

        #all postal code URLs have the same format on this site
        url = 'http://www.city-data.com/zips/' + postal_code_string + '.html'

        #try to get current URL
        try:
            response = requests.get(url, timeout = 5)
            http = response.status_code

            #print current for logging purposes
            print url +" - HTTP:  " + str(http)

            #if valid webpage:
            if http == 200:

                #save html as text
                html = response.text

                #extra print statement for status updates
                print "HTML ready"

                #try to find two substrings in HTML text
                #add the substring in between them to list w/ postal code
                try:           

                    found = re.search('population in 2011:</b> (.*)<br>', html).group(1)

                    #add to # scraped counter
                    total_scraped +=1

                    postal_code_data.append([postal_code_string,found])

                    #print statement for logging
                    print postal_code_string + ": " + str(found) + ". Data scrape successful. " + str(total_scraped) + " total zips scraped."
                #if substrings not found, try searching for others
                #and doing the same as above   
                except AttributeError:
                    found = re.search('population in 2010:</b> (.*)<br>', html).group(1)

                    total_scraped +=1

                    postal_code_data.append([postal_code_string,found])
                    print postal_code_string + ": " + str(found) + ". Data scrape successful. " + str(total_scraped) + " total zips scraped."

            #if http =404, zip is not valid. Add to counter and print log        
            elif http == 404:
                total_invalid +=1

                print postal_code_string + ": Not a valid zip code. " + str(total_invalid) + " total invalid zips."

            #other http codes: add to error counter and print log
            else:
                errors +=1

                print postal_code_string + ": HTTP Code Error. " + str(errors) + " total errors."

        #if get url fails by connnection error, add to error count & pass
        except requests.exceptions.ConnectionError:
            errors +=1
            print postal_code_string + ": Connection Error. " + str(errors) + " total errors."
            pass

        #if get url fails by timeout error, add to error count & pass
        except requests.exceptions.Timeout:
            errors +=1
            print postal_code_string + ": Timeout Error. " + str(errors) + " total errors."
            pass


    #print final log/counter data, along with timestamp finished
    now= datetime.datetime.now()
    print now.strftime("%Y-%m-%d %H:%M")
    print str(total_scraped) + " total zips scraped."
    print str(total_invalid) + " total unavailable zips."
    print str(errors) + " total errors."



Source: http://stackoverflow.com/questions/25452798/how-can-i-circumvent-page-view-limits-when-scraping-web-data-using-python